

Sales Program C&I, Agriculture, Mining

Edition 2/16 valid from 09/2016

Power. Passion. Partnership.

- 02 Contents
- 04 MTU: Power. Passion. Partnership.
- 05 Engine designation
 General specifications
- 06 Selection guideline

Applications

- **08** 5A Diesel engines for heavy duty operation 75 kW 2375 kW
- 18 $\,$ 5B Diesel engines for medium duty operation $\,$ 110 kW 3000 kW
- **32** 5C Diesel engines for short-time operation 373 kW 1000 kW
- 34 Diesel engines for underground mining 75 kW - 429 kW

- 36 Automation
- 42 Engines data
 Cylinder data
 Dimensions and masses
 Weight/Power ratio
- 62 Parts & Service MTU ValueCare
- 72 Exhaust emissions
- 75 Conversion table

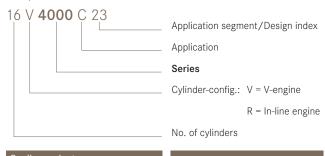
MTU: Power. Passion.

Partnership.

MTU is the core brand of Rolls-Royce Power Systems AG, which is a world-

leading provider of high- and medium-speed diesel and gas engines,

complete drive systems, distributed energy systems and fuel injection


systems for the most demanding requirements.

The product range of MTU is one of the widest and most modern in the sector. We offer comprehensive, powerful and reliable engine solutions for yachts, commercial ships and naval vessels, construction and industrial vehicles, agricultural machinery, mining, rail and military vehicles as well as for the oil and gas industry. We also provide a full line of service products to help you maximize uptime and performance.

For over 100 years, MTU has been known for cutting-edge innovation and technological leadership. That same spirit of innovation inspires our sustainability efforts. Today and in the future, our focus is on developing and implementing system solutions to maximize efficiency and meet emissions standards.

Explanation of the engine designation

Series 900, 460, 500, 1000, 1100, 1300, 1500, 1600, 2000, 4000 Example:

Cooling variants

Separate circuit charge air cooling
Air-to-air charge-air cooling

1600/2000/4000 460/500/900/\$60/ 1000/1100/1300/1500

For further information on MTU C&I, Agriculture and Mining products please contact your MTU distributor or visit: www.mtu-online.com

General specifications

Diesel engine for mobile industrial, agricultural and mining applications

- > Four-stroke, direct-injection
- > Liquid-cooling and air-cooling
- > V or In-line configuration

Power Definition

Rated power of diesel engines in this Sales Program corresponds to ISO 3046

ICFN = ISO standard (continuous) fuel stop power

IFN = ISO standard fuel stop power

(ratings also apply to SAE J 1995 and J 1349 standard conditions)

Barometric pressure: 1000 mbar Site altitude above sea level: 100 m

MTU applies a policy of continual products and systems improvements. Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected. Please contact your MTU distributor for current information and binding data.

Page 08 - 17

Selection Guideline

5A - Diesel engines for heavy duty operation

Typical Applications

ore process combined for moury duty operation	7 5 1111 257 5 1111	
Rating definition: continuous operation with up to 100% load	Load factor > 60%	
Operating hours: unrestricted	Fuel stop power (ICFN)	
5B - Diesel engines for medium duty operation	110 kW - 3000 kW	Page 18 - 31
Rating definition: continuous operation with variable load	Load factor < 60%	
Operating hours: unrestricted	Fuel stop power (ICFN)	
5C - Diesel engines for short-time operation	373 kW - 1000 kW	Page 32 - 33
Rating definition: intermittent operation with variable load	Load factor > 60%	
Operating hours: max. 1000 hours per year	Fuel stop power (ICFN)	
Diesel engines for Underground mining	75 kW - 429 kW	Page 34 - 35
Automation		Page 36 - 41
CaPoS smart edition		
Engine management system - Typical configuration Series 460, 500, 900	***************************************	
motivline – the management technology for mining applications with		
Series 4000-03		
Engines Data		Page 42 - 61
Cylinder Data		
Dimensions and Masses, Weight/Power Ratio		
		D (0.74
Parts & Service		Page 62 - 71
MTU Value Care		
A portfolio of valuable products and services		
Exhaust emissions and Conversion Table		Page 72-75
Exhaust emissions and Conversion Table		

75 kW - 2375 kW

Diesel engines for industrial, agricultural and mining applications

75 kW - 350 kW (101 bhp - 469 bhp)

> Intake air temperature:

25°C

Mercedes-Benz

Engineering Excellence

5A - Heavy duty operation

Engine model	Rated power	er	
	ICFN		
	kW	bhp	rpm
	Air-to-air ch	arge-air cooling	
4R 904 C21	75	101	2200
IR 904 C31	90	121	2200
R 924 C22	95	127	2200
R 906 C21	130	174	2200
SR 906 C31	150	201	2200
R 926 C22	175	234	2200
R 926 C32	195	261	2200
R 460 C11R	220	295	1800
R 460 C11	242	324	1800
R 460 C21	260	349	1800
R 460 C31	295	396	1800
R 460 C22	265	355	1800
R 460 C32	295	396	1800
V 501 C31	260	349	1800
5V 501 C32	265	355	1800
3V 502 C21	330	442	1800
V 502 C31	350	469	1800

- - ② EU Nonroad St IIIA Comp (97/68/EC)
 - Marchina Onroad Stage V (GB17691-2005)

 - 39 EPA Nonroad T4i Comp (40CFR1039)
 - EU Nonroad St IIIB Comp (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
400	295	1200-1600	20(23(3)*
470	345	1200-1600	
500	370	1200-1600	3839
675	500	1200-1600	@33*
750	555	1200-1600	@@3*
850	625	1200-1600	3839
1020	750	1200-1600	3839
1300	960	1300	@@@*
1600	1180	1300	@@@*
1750	1290	1300	@@@*
1900	1400	1300	@@@*
1750	1290	1300	033
1900	1400	1300	2939
1730	1275	1300	@@33*
1850	1365	1300	3939
2150	1585	1300	@@@3*
2300	1695	1300	@@3*

224 kW - 336 kW (300 bhp - 450 bhp)

> Intake air temperature: 25°C

5A - Heavy duty operation

Engine model	Reference no.	Rated po	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK33	224	300	2100
	6063MK33	242	325	2100
	6063MK33	261	350	2100
	6063MK33	280	375	2100
	6063MK33	298	400	2100
	6063MK33	298	400	2200
S60 (14 I)	6063HK33	336	450	2100
S60 (14 I)	6063HV33	242	325	2100
	6063HV33	280	375	2100
	6063HV33	298	400	2100
	6063HV33	317	425	2100
	6063HV33	336	450	2100

Optimization:	(5)	EU Nonroad St II Comp (97/68
	400	EDA Names of TO Comm (400FF

- @ EPA Nonroad T3 Comp (40CFR89)
- ② EU Nonroad St IIIA Comp (97/68/EC)
- ** China NRMM Stage III (GB20981-2014) upon request

Peak Torque			Optimization
Nm	lb-ft	rpm	
1424	1050	1350	<u> </u>
1559	1150	1350	50
1831	1350	1350	50
1831	1350	1350	50
1898	1400	1350	50
1830	1350	1350	50
2237	1650	1350	50
1559	1150	1350	@333*
1830	1350	1350	@33*
1898	1400	1350	@33*
2000	1475	1350	@@@*
2102	1550	1350	@@@*

100 kW - 400 kW (134 bhp - 536 bhp)

> Intake air temperature: 25°C

5A - Heavy duty operation

Engine model	Rated power			
	ICFN			
	kW	bhp	rpm	
	Air-to-air co	oling		
4R 1000 C10	100	134	2200	
4R 1000 C20	115	154	2200	
4R 1000 C30	129	173	2200	
6R 1000 C20	180	241	2200	
6R 1000 C30	210	282	2200	
6R 1100 C30	280	375	1700	
6R 1300 C20	320	429	1700	
6R 1300 C30	340	456	1700	
6R 1500 C30	400	536	1700	

Optimization: @ EPA Nonroad T4 (40CFR1039)

@ EU Nonroad St IV (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
600	443	1200-1500	<u></u>
675	498	1200-1500	Ø Ø
750	553	1200-1600	00
1000	738	1200-1600	00
1150	848	1200-1600	<u> </u>
1900	1401	1300	100
2100	1549	1300	<u> </u>
2200	1623	1300	00
2600	1918	1300	00

Diesel engines for agricultural applications

100 kW - 400 kW (134 bhp - 536 bhp)

> Intake air temperature: 25°C

5A - Heavy duty operation

Engine model	Rated power			
	ICFN			
	kW	bhp	rpm	
	_ Air-to-air co	oling		
4R 1000 A10	100	134	2200	
4R 1000 A20	115	154	2200	
4R 1000 A30	129	173	2200	
6R 1000 A20	180	241	2200	
6R 1000 A30	210	282	2200	
6R 1100 A30	280	375	1700	
6R 1300 A20	320	429	1700	
6R 1300 A30	340	456	1700	
6R 1500 A30	400	536	1700	

Optimization: @ EPA Nonroad T4 (40CFR1039)

@ EU Nonroad St IV (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
600	443	1200-1500	<u> </u>
675	498	1200-1500	00
750	553	1200-1600	00
1000	738	1200-1600	00
1150	848	1200-1600	00
1900	1401	1300	<u> </u>
2100	1549	1300	<u> </u>
2200	1623	1300	00
2600	1918	1300	<u> </u>

567 kW - 2375 kW (760 bhp - 3185 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (12V2000C12/S4000)

50°C (16V2000C12)

5A - Heavy duty operation

Engine model	Rated powe	r	
	ICFN		
	kW	bhp	rpm
	Separate cir	cuit charge-air cooli	ng (SCCC)
12V 2000 C12	567	760	2100
16V 2000 C12	783	1050	1800/2100
12V 4000 C11R	1193	1600	1900
12V 4000 C15	1150	1542	1800
12V 4000 C11	1286	1725	1900
12V 4000 C13R	1193	1600	1800
12V 4000 C25	1250	1676	1800
12V 4000 C13	1343	1800	1800
12V 4000 C13L	1425	1910	1800
12V 4000 C35	1500	2012	1800
16V 4000 C11R	1600	2146	1800
16V 4000 C11	1715	2300	1900
16V 4000 C13R	1492	2000	1800
16V 4000 C13	1750	2345	1800
16V 4000 C13	1750	2345	1900
16V 4000 C13L	1865	2500	1800/1900
20V 4000 C13L	2375	3185	1800

Optimization:

Fuel consumption optimized

- ② EPA Nonroad T1 Comp (40CFR89)
- ② EPA Nonroad T4 (40CFR1039)
- Thina NRMM Stage III (GB20981-2014)

All 5A-ratings can be used for 5B applications!

Data for Tier 4 final engines are preliminary.

Peak Torque			Optimization
Nm	lb-ft	rpm	
3300	2441	1350	
4450	3288	1350	19
7612/7595	5614/5602	1500	X 2
7351	5422	1494	20
6985	5151	1500	X 2
7595	5600	1500	<u>×(93)</u>
7990	5893	1494	①
8550	6306	1500	⊠®3
9070	6690	1500	⊠®
9588	7072	1494	20
10188	7515	1500	2
9313	6896	1500	X 2
9520	7022	1350	X (93)
11141	8216	1500	⊠®®
11141	8216	1500	X
11870	8754	1500	⊠®3
15120	11152	1500	X (93)

Diesel engines for industrial, agricultural and mining applications

110 kW - 375 kW (147 bhp - 503 bhp)

> Intake air temperature:

25°C

Mercedes-Benz

Engineering Excellence

5B - Medium duty operation

Engine model	Rated power		
	ICFN		
	kW	bhp	rpm
	Air-to-air ch	arge-air cooling	
4R 904 C61	110	147	2200
4R 904 C71	129	173	2200
4R 924 C71	145	194	2200
4R 924 C52	115	154	2200
4R 924 C62	129	173	2200
4R 924 C72	150	201	2200
6R 906 C51	170	228	2200
6R 906 C61	190	255	2200
6R 906 C71	205	275	2200
6R 926 C61	220	295	2200
6R 926 C71	240	322	2200
5R 926 C52	210	281	2200
6R 926 C62	225	302	2200
6R 926 C72	240	322	2200
6R 460 C41	315	422	1800
6R 460 C51	335	449	1800
6R 460 C61	360	483	1800
6R 460 C71	375	503	1800
6R 460 C42	315	422	1800
6R 460 C52	335	449	1800
6R 460 C62	360	483	1800
SR 460 C72	375	503	1800

② EU Nonroad St IIIA Comp (97/68/EC)

China Onroad Stage V (GB17691-2005)

* China NRMM Stage III (GB20981-2014) upon request

Sepa Nonroad T4i Comp (40CFR1039)

EU Nonroad St IIIB Comp (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	_
580	430	1200-1600	 @@@*
675	500	1200-1600	@@3*
750	 555	1200-1600	@@33*
610	450	1200-1600	3839
675	500	1200-1600	3839
800	590	1200-1600	3839
810	595	1200-1600	@@@*
1000	735	1200-1600	@@@*
1100	810	1200-1600	@@@*
1200	885	1200-1600	@@@*
1300	960	1200-1600	@@@*
1120	825	1200-1600	3839
1200	885	1200-1600	3839
1300	960	1200-1600	3839
2000	1475	1300	@@@*
2000	1475	1300	@@@*
2200	1620	1300	@@@*
2200	1620	1300	@@@*
2000	1475	1300	2933
2000	1475	1300	03839
2200	1620	1300	2939
2200	1620	1300	3839

Diesel engines for industrial, agricultural and mining applications

290 kW - 480 kW (389 bhp - 644 bhp)

> Intake air temperature:

25°C

Mercedes-Benz

Engineering Excellence

5B - Medium duty operation

Engine model	Rated power ICFN			
	kW	bhp	rpm	
	Air-to-air ch	arge-air cooling		
6V 501 C51	290	389	1800	
6V 501 C61	315	422	1800	
6V 501 C52	300	402	1800	
6V 501 C62	320	429	1800	
6V 501 C72	350	469	1800	
8V 502 C41	390	523	1800	
8V 502 C51	420	563	1800	
8V 502 C61	450	603	1800	
8V 502 C71	480	644	1800	
8V 502 C42	375	503	1800	
8V 502 C52	405	543	1800	
8V 502 C62	440	590	1800	
8V 502 C72	480	644	1800	

Optimization: @ EPA Nonroad T3 Comp (40CFR89)

② EU Nonroad St IIIA Comp (97/68/EC)

China Onroad Stage V (GB17691-2005)

* China NRMM Stage III (GB20981-2014) upon request

EU Nonroad St IIIB Comp (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
1850	1365	1300	@@3*
2000	1475	1300	@@3)*
2000	1475	1300	3839
2100	1550	1300	3839
2300	1695	1300	3939
2400	1770	1300	@@31*
2700	1990	1300	@@3)*
2700	1990	1300	@@31*
2800	2065	1300	@@31*
2400	1770	1300	293939
2600	1915	1300	933
2800	2065	1300	93839
3000	2210	1300	293939

317 kW - 429 kW (425 bhp - 575 bhp)

> Intake air temperature:

25°C

5B - Medium duty operation

Engine model	Reference no.	Rated po	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK33	317	425	2100
	6063MK33	332	445	2200
	6063MK33	336	450	2100
	6063MK33	354	475	2100
S60 (14.0 I)	6063HV33	354	475	2100
	6063HV33	373	500	2100
	6063HV33	391	525	2100
	6063HV33	397	533	2000
	6063HV33	410	550	2100
	6063HK33	391	525	2100
	6063HK33	397	533	2000
	6063HK33	410	550	2100
	6063HK33	410	550	2300
	6063HK33	429	575	2100

Vm	lb-ft	rpm	
2000	1475	1350	50
2000	1475	1350	50
2102	1550	1350	50
2102	1550	1350	509
2102	1550	1350	@@33*
2102	1550	1350	@Ø33*
2373	1750	1350	@@31*
2373	1750	1350	@@31*
2373	1750	1350	@@3*
2373	1750	1350	50
2373	1750	1350	50
2373	1750	1350	50
2373	1750	1350	50
2373	1750	1350	50

- Optimization:
 ⑤ EU Nonroad St II Comp (97/68/EC)

 - EPA Nonroad T3 Comp (40CFR89)
 - 29 EU Nonroad St IIIA Comp (97/68/EC)
 - 1 China NRMM Stage III (GB20981-2014) upon request

150 kW - 736 kW (201 bhp - 987 bhp)

> Intake air temperature:

25°C

5B - Medium duty operation

	ty operation				
Engine model	Rated power	·			
	ICFN				
	kW	bhp	rpm		
	Air-to-air co	oling			
4R 1000 C40	150	201	2200		
4R 1000 C50	170	228	2200		
6R 1000 C40	230	308	2200		
6R 1000 C50	260	349	2200		
6R 1100 C40	300	402	1700		
6R 1100 C50	320	429	1700		
6R 1300 C40	360	483	1700		
6R 1300 C50	380	510	1700		
6R 1300 C60	390	523	1700		
6R 1500 C50	430	577	1700		
6R 1500 C60	460	617	1700		
	Separate cir	cuit charge-air cool	ing (SCCC)		
10V 1600 C60	567	760	2100		
10V 1600 C70	613	822	1900		
12V 1600 C50	636	853	1900		
12V 1600 C60	680	912	2100		
12V 1600 C70	736	987	1900		

Optimization: (3) EPA Nonroad T4 Comp (40CFR1039)

@ EPA Nonroad T4 (40CFR1039)

@ EU Nonroad St IV (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
800	590	1200-1600	<u> </u>
900	664	1200-1600	Ø Ø
1250	922	1200-1600	0 0
1400	1033	1200-1600	00
2000	1475	1300	<u> </u>
2100	1549	1300	<u> </u>
2300	1696	1300	<u> </u>
2380	1755	1300	00
2450	1807	1300	00
2750	2028	1300	<u> </u>
2900	2139	1300	<u> </u>
3385	2497	1200	- · · · · · · · · · · · · · · · · · · ·
3517	2594	1300	® Ø
4020	2965	1300	® 2
4100	3024	1300	® 2
4220	3113	1300	32

Diesel engines for agricultural applications

150 kW - 736 kW (201 bhp - 987 bhp)

> Intake air temperature:

25°C

5B - Medium duty operation

Engine model	Rated pow	er	
6	ICFN		
	kW	bhp	rpm
	Air-to-air co	ooling	
4R 1000 A40	150	201	2200
4R 1000 A50	170	228	2200
6R 1000 A40	230	308	2200
6R 1000 A50	260	349	2200
6R 1100 A40	300	402	1700
6R 1100 A50	320	429	1700
6R 1300 A40	360	483	1700
6R 1300 A50	380	510	1700
6R 1300 A60	390	523	1700
6R 1500 A50	430	577	1700
6R 1500 A60	460	617	1700
	Separate ci	rcuit charge-air cool	ing (SCCC)
10V 1600 A60	567	760	2100
10V 1600 A70	613	822	1900
12V 1600 A50	636	853	1900
12V 1600 A60	680	912	2100
12V 1600 A70	736	987	1900

Optimization: (3) EPA Nonroad T4 Comp (40CFR1039)

@ EPA Nonroad T4 (40CFR1039)

@ EU Nonroad St IV (97/68/EC)

Peak Torque			Optimization
Nm	lb-ft	rpm	
800	590	1200-1600	
900	664	1200-1600	Ø Ø
1250	922	1200-1600	0 0
1400	1033	1200-1600	00
2000	1475	1300	۵0
2100	1549	1300	<u></u>
2300	1696	1300	<u> </u>
2380	1755	1300	00
2450	1807	1300	<u> </u>
2750	2028	1300	<u> </u>
2900	2139	1300	<u> </u>
3385	2497	1200	
3517	2594	1300	1321
4020	2965	1300	1321
4100	3024	1300	1321
4220	3113	1300	1321

634 kW - 2013 kW (850 bhp - 2699 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (12V 2000/16V 2000 C66/

S4000)

47°C (16V 2000 C22)

5B - Medium duty operation

	D		
Engine model	Rated powe	r	
	ICFN		
	kW	bhp	rpm
		cuit charge-air cooli	,
12V 2000 C22R	634	850	2100
12V 2000 C22	675	905	2100
12V 2000 C66R*	783	1050	1800
12V 2000 C66	783	1050	2100
16V 2000 C22	899	1205	2100
16V 2000 C66	970	1301	2100
12V 4000 C21R	1398	1875	1900
16V 4000 C21R	1492	2000	1900
12V 4000 C21	1510	2025	1900
12V 4000 C23R	1510	2025	1800
12V 4000 C23R	1510	2025	1900
12V 4000 C23	1680	2253	1800/1900
12V 4000 C55	1750	2347	1900
12V 4000 C65	1864	2500	1800
12V 4000 C65	1864	2500	1900
16V 4000 C21	1864	2500	1900
16V 4000 C45	2000	2682	1900
16V 4000 C45	2000	2682	1800
16V 4000 C21L	2013	2699	1900

Optimization: X Fuel consumption optimized

- ② EPA Nonroad T1 Comp (40CFR89)
- @ EPA Nonroad T4 (40CFR1039)
- China NRMM Stage III (GB20981-2014)
- * also available for 2A application

Peak Torque			Optimization
Nm	lb-ft	rpm	
3750	2766	1500	1939
4000	2950	1500	® 3
4636	3419	1100	38
4636	3419	1100	38
5250	3872	1500	(93)
5286	3899	1400	38
7610	5613	1500	⊠2
9494	7003	1500	2
8199	6047	1500	X 2
8482	6255	1700	I (93)
on request	on request	on request	⊠19
9435	6959	1700	X (93)
9258	6828	1805	0
10409	7677	1710	Ø
9861	7273	1805	Ø
10146	7483	1500	X 2
10581	7804	1805	Ø
11169	8238	1710	Ø
10933	8064	1500	X 2

Data for Tier 4 final engines are preliminary.

1510 kW - 3000 kW (2025 bhp - 4023 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (S4000)

5B - Medium duty operation

Engine model	Rated powe	r	
	ICFN		
	kW	bhp	rpm
	Separate cir	cuit charge-air cooli	ng (SCCC)
16V 4000 C23R	2013	2699	1800
16V 4000 C23R	2013	2699	1900
16V 4000 C31	2125	2850	1900
16V 4000 C23	2240	3000	1800
16V 4000 C55	2240	3004	1900
16V 4000 C55	2240	3004	1800
16V 4000 C65	2400	3218	1800
20V 4000 C22	2720	3650	1800
20V 4000 C55*	2800	3755	1800
20V 4000 C23	2800	3755	1800
20V 4000 C23L	3000	4023	1800
20V 4000 C65*	3000	4023	1800

Optimization:

Fuel consumption optimized

- ② EPA Nonroad T1 Comp (40CFR89)
- ② EPA Nonroad T4 (40CFR1039)
- Ohina NRMM Stage III (GB20981-2014)
- * upon request

Data for Tier 4 final engines are preliminary.

Peak Torque			Optimization
Nm	lb-ft	rpm	
11310	8342	1700	⊠ ®3
on request	on request	on request	X (9)
11142	8228	1800	X
12566	9268	1700	⊠®3
11851	8741	1805	2
12509	9226	1710	2
13403	9886	1710	2
15159	11181	1500	2
15363	11331	1710	2
15728	11600	1700	⊠®®
16852	12429	1700	⊠@3
16753	12356	1710	2

? – Short-time utv operation

Diesel engines for industrial and mining applications

373 kW - 1000 kW (500 bhp - 1341 bhp)

> Intake air temperature:

25°C

> Charge-air coolant temperature: 45°C (S2000)

5C - Short-time duty operation

Engine model	Reference no.	Rated pov	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
S60 (12.7 I)	6063MK33	373	500	2100
	6063MK33	373	500	2300
S60 (14.0 I)	6063HV33	447	600	2100
	6063HV45	447	600	2300
	6063HV33	470	630	2100
	6063HV33	496	665	2300
	6063HV45	496	665	2300
	6063HK45	447	600	2300
	6063HK33	447	600	2100
	6063HK33	470	630	2100
	6063HK33	496	665	2300
	6063HK45	496	665	2300
	Separate circuit	charge-air co	oling (SCCC)	
12V2000 C92R	-	750	1005	2100
16V2000 C92R	-	1000	1341	2100

Optimization: ⑤ EU Nonroad St II Comp (97/68 EC)

- @ EPA Nonroad T3 Comp (40CFR89)
- EU Nonroad St IIIA Comp (97/68/EC)
- 10 * China NRMM Stage III (GB20981-2014) upon request

Peak Torque			Optimization
Nm	lb-ft	rpm	
2102	1550	1350	<u> </u>
2237	1650	1350	50
2576	1900	1350	@@@*
2576	1900	1350	00
2576	1900	1350	@@@*
2576	1900	1350	@@@*
2576	1900	1350	03
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	50
2576	1900	1350	509
4100	3024	1500	
5250	3872	1500	19

Diesel engines for underground mining applications

75 kW - 429 kW (101 bhp - 575 bhp)

> Intake air temperature: 25°C

Underground Mining

onderground wi				
Engine model	Reference no.	Rated pov	wer	
		ICFN		
		kW	bhp	rpm
	Air-to-air charge-	air cooling		
4R 904 C	4R 904 C21	75	101	2200
	4R 904 C31	90	121	2200
	4R 904 C	100	134	2200
	4R 904 C61	110	147	2200
	4R 904 C71	130	174	2200
6R 906 C	6R 906 C31	150	201	2200
	6R 906 C51	170	228	2200
	6R 906 C	180	241	2200
	6R 906 C61	190	255	2200
	6R 906 C71	205	275	2200
S60 (12.7 I)	6063MK32	224	300	2100
	6063MK32	242	325	2100
	6063MK32	261	350	2100
	6063MK32	280	375	2100
	6063MK32	298	400	2100
	6063MK32	317	425	2100
	6063MK32	336	450	2100
	6063MK32	354	475	2100
S60 (14.0 I)	6063HK32	392	525	2100
	6063HK32	410	550	2100
	6063HK32	429	575	2100

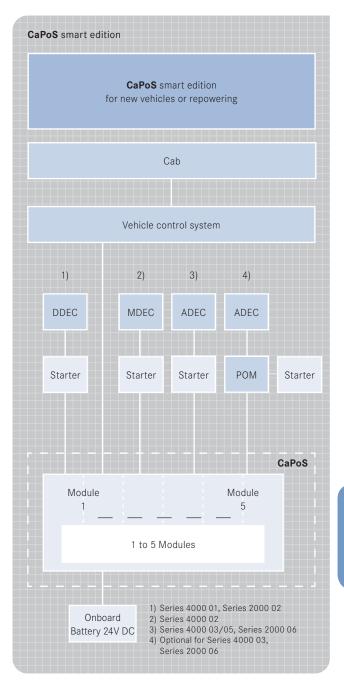
Peak Torque			Optimization
Nm	lb-ft	rpm	
400	295	1400	MSHA
470	345	1400	MSHA
520	385	1400	MSHA
580	430	1400	MSHA
675	500	1400	MSHA
750	555	1400	MSHA
810	595	1400	MSHA
900	665	1400	MSHA
1000	735	1400	MSHA
1100	810	1400	MSHA
1424	1050	1350	MSHA
1600	1150	1350	MSHA
1830	1350	1350	MSHA
1830	1350	1350	MSHA
1830	1350	1350	MSHA
2000	1475	1350	MSHA
2102	1550	1350	MSHA
2102	1550	1350	MSHA
2373	1750	1350	MSHA
2373	1750	1350	MSHA
2373	1750	1350	MSHA

Optimization: MSHA (US regulation 30 CFR part 7)

Automation

CaPoS smart edition - Capacitor Power System for Series 2000, 4000

Reliable power right from the start.


CaPoS smart edition was especially developed for heavy and duty applications and provides the high energy required by the 24V DC starters during the starting sequence.

CaPoS uses capacitor technology to optimize startup behavior. The number of modules to be used depends on the type of engine involved and its breakaway torque. CaPoS smart edition may be used autonomously or in conjunction with the **motiv**line automation system.

The most important features at a glance:

- Autonomous and modular construction
- Maintenance-free system
- Significant reductions in weight and volume compared with conventional starter batteries
- Optimized cold-starting capabilities
- Low life-cycle costs
- No voltage interruption during start-up
- On-board voltage of 24V DC
- Integrated self-monitoring system with interface to vehicle control system
- Integrated DC-/DC converter for automatical recharging
- IP66 protection

We manage everything for you.

All our engines are equipped with electronic engine controls. Intelligent electronics ensure that performance and efficient operation are achieved under all operating conditions. Innovative, high-end technology takes over the control, regulation and monitoring of the drive system. The systems are modular in order to be able to adapt the diesel engine to the complex optimal operating conditions of the equipment. In addition, operating conditions that could lead to damage are detected in time.


Your benefits:

- Protection of the engine and therefore safety by:
 - · Reporting critical operating conditions
 - Temporary reduction in power
 - · Automatic shutdown
 - · Start inhibitor
 - · Over speed regulation
 - · Self-diagnosis and regulation for the system
- Standard interfaces for external system connections, such as CAN data bus and SAE J 1939
 - · Easy integration with the vehicle
 - Flexible adjustment to the vehicle or vehicle components and project specific needs
 - · Interface for engine diagnosis
- High availability and fail-safe operation
- High power efficiency
- Low fuel consumption
- Minimal exhaust emissions that fully meet all legal requirements

For engines equipped with SCR systems, we are your expert technology partner. The latest electronics integrate the necessary SCR components for the reduction of emissions intelligently into the overall system. This ensures optimal tuning of all engine and emission control functions.

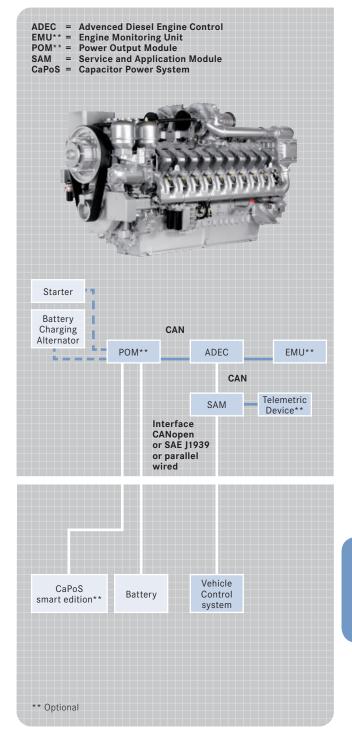
Engine management system

- Typical configuration Series 460, 500, 900

motiv*line* - the management technology for mining applications with Series 4000-03

The **motiv**line automation system is an innovative highend technology developed by MTU for mining vehicles. motivline performs the control and monitoring functions for the entire engine plant. The modular system guarantees optimum adaptation of the diesel engine to the diversity of operating conditions in mining.

motiv*line* supports:


- > flexible adaptation to the vehicle and/or its components and project-specific requirements
- > automatic power output adjustment or optional engine shutdown by the integrated safety system and all other necessary monitoring and safety functions
- > Interface MTU telemetric device for GSM* for MTU ValueCare Product Remote Services (optional with user agreement), which provides direct access to the data of your MTU engine
- > Easy adaptation by means of MTU interface module SAM

motiv*line* harmonizes the engine integration into the vehicle. Because of that optimized conditions generates:

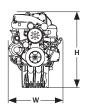
- > high power- efficiency
- > low fuel consumption
- > minimal exhaust emissions that are substantially below the legal limits

For the Series 4000 engines, a new engine management system ADEC has been developed, whilst there is also an extensive range of standardized solutions available - with options for flexible interfaces. The Engine Monitoring Unit EMU provides further enhanced availability by means of additional monitoring and diagnostic options for the engine. Complementing the SAM interface module, POM optimizes the start process and simplifies cabling to the starter and alternator. The complete Plug & Play system makes installation of the engine in the vehicle considerably simpler and faster.

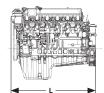
* Global System for Mobile Communications

Diesel engine for industrial, agricultural and mining applications




Engineering Excellence

Series 900



Diesel engines for industrial, agricultural and mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
4R 904 C01	102/130	1.06	4.2
4 Cyl./In-Line	(4.0/5.1)	(65)	(256)
4R 924 C01	106/136	1.20	4.8
4 Cyl./In-Line	(4.2/5.4)	(73)	(293)
4R 924 C02	106/136	1.20	4.8
4 Cyl./In-Line	(4.2/5.4)	(73)	(293)
6R 906 C01	102/130	1.06	6.4
6 Cyl./In-Line	(4.0/5.1)	(65)	(391)
6R 926 C01	106/136	1.20	7.2
6 Cyl./In-Line	(4.2/5.4)	(73)	(439)
6R 926 C02	106/136	1.20	7.2
6 Cyl./In-Line	(4.2/5.4)	(73)	(439)
6R 460 C11R-C21	128/166	2.13	12.8
6 Cyl./In-Line	(5.0/6.5)	(129)	(781)
6R 460 C31-C71	128/166	2.13	12.8
6 Cyl./In-Line	(5.0/6.5)	(129)	(781)
6R 460 C02	128/166	2.13	12.8
6 Cyl./In-Line	(5.0/6.5)	(129)	(781)

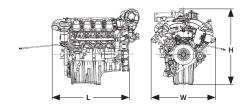
Please note, specifications are subject to change without notice. All dimensions are approximate. Details are subject to options selected.

Dimensions, max.	Mass, max.
LxWxH	(dry)
mm (in)	kg (lbs.)
830 x 672 x 945	395
(33 x 26 x 37)	(870)
830 x 645 x 925	405
(33 x 25 x 36)	(893)
830 x 645 x 925	415
(33 x 25 x 36)	(915)
1087 x 688 x 956	530
(43 x 27 x 38)	(1168)
1087 x 681 x 956	530
(43 x 27 x 38)	(1168)
1087 x 681 x 956	545
(43 x 27 x 38)	(1202)
1315 x 785 x 1142	920
(52 x 31 x 45)	(2028)
1320 x 750 x 1115	920
$(52 \times 30 \times 44)$	(2028)
1320 x 750 x 1115	930
(52 x 30 x 44)	(2072)

Please contact your mtu distributor for current information and binding data.

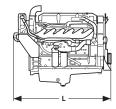
ngines data

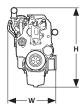
Diesel engine for industrial, agricultural and mining applications



Engineering Excellence

Series 500


Diesel engines for industrial, agricultural and mining applications


Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
6V 501 C01	130/150	1.99	12.0
6 Cyl./90°V	(5.1/5.9)	(121)	(732)
6V 501 C02	130/150	1.99	12.0
6 Cyl./90°V	(5.1/5.9)	(121)	(732)
8V 502 C21-C51	130/150	1.99	15.9
8 Cyl./90°V	(5.1/5.9)	(121)	(970)
8V 502 C61-C71	130/150	1.99	15.9
8 Cyl./90°V	(5.1/5.9)	(121)	(970)
8V 502 C02	130/150	1.99	15.9
8 Cyl./90°V	(5.1/5.9)	(121)	(970)

Dimensions, max.	Mass, max.
LxWxH	(dry)
mm (in)	kg (lbs.)
1206 x 1020 x 1158	885
$(47 \times 40 \times 46)$	(1951)
1190 x 1020 x 1130	895
$(47 \times 40 \times 44)$	(1973)
1515 x 1013 x 1053	1125
$(60 \times 40 \times 41)$	(2480)
1385 x 1021 x 1198	1125
$(55 \times 40 \times 47)$	(2480)
1530 x 1195 x 1080	1135
$(60 \times 47 \times 43)$	(2502)

Series 60

Diesel engines for industrial, agricultural and mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
S60	130/160	2.12	12.7
6 Cyl./In-line	(5.1/6.3)	(129)	(775)
S60	133/168	2.33	14.0
6 Cyl./In-line	(5.2/6.6)	(142)	(854)

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH mm (in)	(dry) kg (lbs.)	kg/kW (lbs./bhp)
1455×925×1380	1290	3.5 - 5.8
(57 x 36 x 54)	(2844)	(5.7 - 9.5)
1455 x 925 x 1380	1215	2.4 - 5.4
$(57 \times 36 \times 54)$	(2680)	(4.0 - 8.9)

Series 1000

Series 1300

Series 1100

Series 1500

Diesel engines for industrial and mining applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
4R 1000 C00	110/135	1.28	5.1
4 Cyl./In-Line	(4.3/5.3)	(78)	(311)
6R 1000 C00	110/135	1.28	7.7
6 Cyl./In-Line	(4.3/5.3)	(78)	(470)
6R 1100 C00	125/145	1.77	10.7
6 Cyl./In-Line	(4.9/5.7)	(108)	(652)
6R 1300 C00	132/156	2.13	12.8
6 Cyl./In-Line	(5.2/6.1)	(130)	(781)
6R 1500 C00	139/171	2.60	15.6
6 Cyl./In-Line	(5.5/6.7)	(159)	(952)

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
818 x 755 x 1033	510	3.0 - 5.0
(32.2 x 29.7 x 40.7)	(1124)	(4.9 - 8.2)
1059 x 821 x 1033	669	2.6 - 3.6
(41.7 x 32.3 x 40.7)	(1475)	(4.2 - 6.0)
1325 x 955 x 1230	950	3.0 - 3.4
$(52.7 \times 37.6 \times 48.4)$	(2094)	(4.9 - 5.6)
1375 x 980 x 1260	1083	2.8 - 3.4
(54.1 x 38.6 x 49.6)	(2388)	(4.6 - 5.6)
1425 x 1005 x 1290	1235	2.7 - 3.1
$(56.1 \times 39.6 \times 50.8)$	(2723)	(4.4 - 5.1)

Diesel engine for agricultural applications

Series 1000

Series 1300

Series 1100

Series 1500

Diesel engines for agricultural applications

Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
4R 1000 A00	110/135	1.28	5.1
4 Cyl./In-Line	(4.3/5.3)	(78)	(311)
6R 1000 A00	110/135	1.28	7.7
6 Cyl./In-Line	(4.3/5.3)	(78)	(470)
6R 1100 A00	125/145	1.77	10.7
6 Cyl./In-Line	(4.9/5.7)	(108)	(652)
6R 1300 A00	132/156	2.13	12.8
6 Cyl./In-Line	(5.2/6.1)	(130)	(781)
6R 1500 A00	139/171	2.60	15.6
6 Cyl./In-Line	(5.5/6.7)	(159)	(952)

Dimensione many	Mass	Wainht /Davier ratio
Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
818 x 755 x 1033	510	3.0 - 5.0
(32.2 x 29.7 x 40.7)	(1124)	(4.9 - 8.2)
1059 x 821 x 1033	669	2.6 - 3.6
(41.7 x 32.3 x 40.7)	(1475)	(4.2 - 6.0)
1325 x 955 x 1230	950	3.0 - 3.4
$(52.7 \times 37.6 \times 48.4)$	(2094)	(4.9 - 5.6)
1375 x 980 x 1260	1083	2.8 - 3.4
$(54.1 \times 38.6 \times 49.6)$	(2388)	(4.6 - 5.6)
1425 x 1005 x 1290	1235	2.7 - 3.1
$(56.1 \times 39.6 \times 50.8)$	(2723)	(4.4 - 5.1)

Series 1600

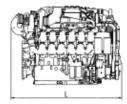
Diesel engines for industrial and mining applications

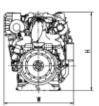
Engine	Cylinder data		
	Bore/Stroke	Cyl. displac.	Total displac.
	mm (in)	I (cu in)	I (cu in)
10V 1600 C00	122/150	1.75	17.5
10 Cyl./90°V	(4.8/5.9)	(107)	(1068)
12V 1600 C00	122/150	1.75	21
12 Cyl./90°V	(4.8/5.9)	(107)	(1282)

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
1707 x 1258 x 1200	1940	3.2 - 3.4
(67.2 x 49.5 x 47.2)	(4277)	(5.3 - 5.6)
1873 x 1258 x 1200	2200	3.0 - 3.5
(73.7×49.5×47.2)	(4850)	(5.0 - 5.7)

Diesel engine for agricultural applications

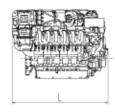
Series 1600

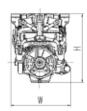

Diesel engines for agricultural applications


Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
10V 1600 A00	122/150	1.75	17.5
10 Cyl./90°V	(4.8/5.9)	(107)	(1068)
12V 1600 A00	122/150	1.75	21
12 Cyl./90°V	(4.8/5.9)	(107)	(1282)

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
1707 x 1258 x 1200	1940	3.2 - 3.4
(67.2 x 49.5 x 47.2)	(4277)	(5.3 - 5.6)
1873 x 1258 x 1200	2200	3.0 - 3.5
(73.7 x 49.5 x 47.2)	(4850)	(5.0 - 5.7)

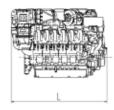
Series 2000

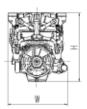

Diesel engines for industrial, agricultural and mining applications


Engine	Cylinder data		
	Bore/Stroke mm (in)	Cyl. displac. I (cu in)	Total displac. I (cu in)
12V 2000 C02	130/150	1.99	23.9
12 Cyl./90°V	(5.1/5.9)	(121)	(1458)
16V 2000 C02	130/150	1.99	31.9
16 Cyl./90°V	(5.1/5.9)	(121)	(1947)
12V 2000 C06	135/156	2.23	26.8
12 Cyl./90°V	(5.3/6.2)	(136)	(1633)
16V 2000 C06	135/156	2.23	35.7
16 Cyl./90°V	(5.3/6.2)	(136)	(2177)

Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
1864 x 1205 x 1286	2416	3.2 - 4.3
$(73.4 \times 47.4 \times 50.6)$	(5326)	(5.3 - 7.0)
2360 x 1247 x 1314	2994	3.0 - 3.8
(93 x 49,1 x 51,7)	(6601)	(4.9 - 6.3)
2028 x 1278 x 1461	2950	3.8
$(79.8 \times 50.3 \times 57.5)$	(6503)	(6.2)
2378 x 1288 x 1488	3350	3.5
$(93.6 \times 50.7 \times 58.6)$	(7385)	(5.7)

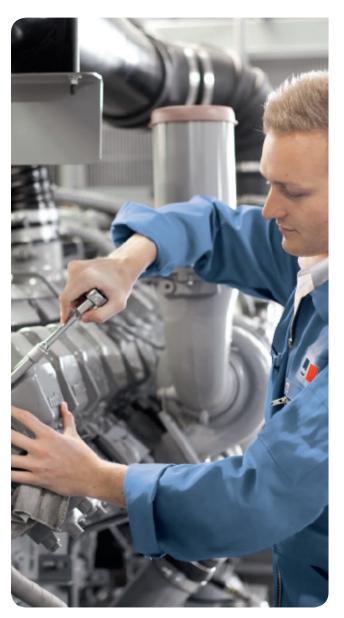
Series 4000


Diesel engines for industrial and mining applications


Engine	Cylinder data		
	Bore/Stroke	Cyl. displac.	Total displac.
	mm (in)	I (cu in)	I (cu in)
12V 4000 C01	165/190	4.06	48.8
12 Cyl./90°V	(6.5/7.5)	(248)	(2978)
16V 4000 C01	165/190	4.06	65.0
16 Cyl./90°V	(6.5/7.5)	(248)	(3967)
20V 4000 C02	165/210	4.49	89.8
20 Cyl./90°V	(6.5/8.3)	(274)	(5480)
12V 4000 C03	170/210	4.77	57.3
12 Cyl./90°V	(6.7/8.3)	(291)	(3493)
16V 4000 C03	170/210	4.77	76.3
16 Cyl./90°V	(6.7/8.3)	(291)	(4656)
20V 4000 C03	170/210	4.77	95.4
20 Cyl./90°V	(6.7/8.3)	(291)	(5822)

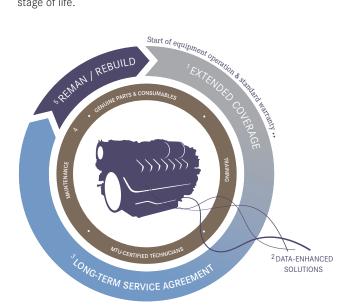
Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
2409 x 1588 x 1736	6045	4.0 - 5.1
$(94.8 \times 62.5 \times 68.3)$	(13325)	(6.6 - 8.3)
2879 x 1588 x 1736	7030	3.5 - 4.4
(113.4 x 62.5 x 68.3)	(15615)	(5.8 - 7.3)
3647 x 1609 x 2065	9865	3.6
(143.6 x 63.3 x 81.3)	(21750)	(6.0)
2497 x 1629 x 2065	7000	4.2 - 5.9
(98.3 x 64.1 x 81.3)	(15430)	(6.8 - 9.7)
3020 x 1629 x 2065	8100	3.6 - 5.4
(118.9 x 64.1 x 81.3)	(17860)	(6.0 - 8.9)
3647 x 1609 x 2065	10700	3.6 - 4.5
(143.6 x 63.3 x 81.3)	(23590)	(6.0 - 7.4)

Series 4000



Diesel engines for industrial and mining applications

Engine	Cylinder data	nder data		
	Bore/Stroke	Cyl. displac.	Total displac.	
	mm (in)	I (cu in)	I (cu in)	
12V 4000 C05	170/210	4.77	57.2	
12 Cyl./90°V	(6.7/8.3)	(291)	(3491)	
16V 4000 C05	170/210	4.77	76.3	
16 Cyl./90°V	(6.7/8.3)	(291)	(4656)	
20V 4000 C05	170/210	4.77	95.3	
20 Cyl./90°V	(6.7/8.3)	(291)	(5816)	


Dimensions, max.	Mass, max.	Weight/Power ratio
LxWxH	(dry)	kg/kW
mm (in)	kg (lbs.)	(lbs./bhp)
2633 x 1631 x 1997	7960	4.3 - 6.9
(103.7 x 64.2 x 78.6)	(17549)	(7.0 - 11.4)
3201 x 1631 x 1997	9350	4.1 - 4.9
(126.0 x 64.2 x 78.6)	(20613)	(6.7 - 8.0)
3722 x 1631 x 2001	11250	3.9 - 4.2
(146.5 x 64.2 x 78.8)	(24802)	(6.4 - 6.9)

Ensure a long, reliable life.

As your equipment ages, its needs-and yours-change.

MTU **Value**Care wraps around your MTU investment, providing 360 degrees of customized support, for optimal value at every stage of life.

MTU ValueCare can help you:

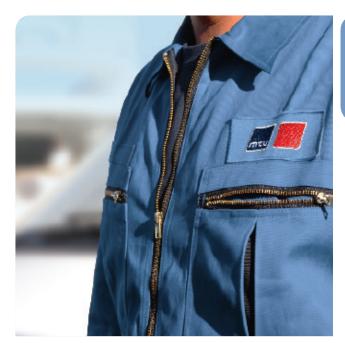
- 1. Avoid the unexpected with added protection beyond the standard warranty*.
- 2. Make better decisions faster with data-enhanced tools*.
- 3. Maximize availability and optimize lifecycle costs with an individually tailored Long-term Service Agreement*.
- 4. Improve system performance and extend equipment life with on-demand support from MTU.
- 5. Keep a good thing going with MTU reman/rebuild solutions.
- * Available for mining engines and systems.

MTU ValueCare

Rely on MTU expertise.

To give your equipment a long and productive life, choose a partner you can trust. Only MTU-certified technicians know how to get the job done right using proven service methods, MTU-specified maintenance schedules and genuine OEM parts and consumables. Whatever level of support you need, our global network of factory-trained professionals is ready to prepare a customized plan to help you maximize performance and minimize life-cycle-costs.

If you need us a little:


On-Demand Support-including professional inspections and preventive maintenance recommendations from MTU - helps you identify and address problems early, save on repairs or unexpected downtime, and optimize your equipment's performance and longevity. Inspections include visual assessment, test run and leak check, on-site oil and coolant analysis, diagnostic evaluation and reporting.

If you need us a lot:

Long-term Service Agreements for mining applications make it easy to plan the cost of maintenance and maximize availability throughout your MTU equipment's lifecycle. The details, terms and periods of each package are precisely tailored to match your individual needs, with maintenance performed by MTU-certified technicians using only genuine new or remanufactured parts.

Learn from the best.

Training is a great way to become proficient with MTU engines and systems and get maximum efficiency from your equipment. From preventive maintenance to diagnostics and repair, our training programs provide a hands-on learning experience with knowledgeable, expert trainers. We offer a wide range of customized training programs around the world to maximize your return on investment.

Never compromise.

MTU engines and systems are built to last with legendary high standards. When it's time for service, don't settle for anything less. For maximum reliability, performance and uptime, choose a name you can trust - MTU.

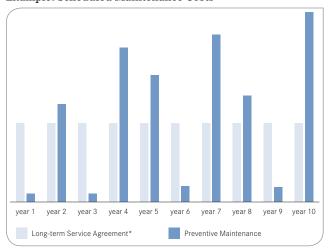
MTU ValueCare

Plan ahead.

MTU ValueCare

Protect your investment.

The annual cost of maintenance can vary dramatically depending on how and where your equipment is used. At mine sites where optimal equipment availability and performance are essential, and predictable costs are preferred, Long-term Service Agreements can help.


Preventive

All preventive maintenance services up to 10 years according to your approved MTU maintenance schedule, performed by MTU-certified technicians at your local MTU-authorized distributor.

All Inclusive

All preventive maintenance services up to 10 years according to your approved MTU maintenance schedule, performed by MTU-certified technicians at your local MTU-authorized distributor, including all necessary corrective services.

Example: Scheduled Maintenance Costs

^{*}Excludes corrective services

MTU mining engines – backed by Extended Coverage – provide invaluable peace of mind beyond the standard warranty. With Extended Coverage, you can be assured that the costs of unexpected repairs are covered, with service performed by MTU-certified technicians—upholding resale value and ensuring long-term confidence in your MTU investment.

Extended Coverage protects you from the cost of unexpected repairs beyond your standard warranty, with professional service from MTU-certified technicians and coverage tailored to your needs. Packages can also be extended up to 5 years and are fully transferrable, enhancing resale value. Coverage includes material and labor for troubleshooting, fault clearance and corrective services to engines and on-engine electronics (excluding gearbox, alternators, or similar components). To ensure maximum quality, all repairs are conducted using only genuine MTU parts.

MTU ValueCare

Make better decisions - faster.

MTU **Value**Care

Exchange and save.

Digitization is more than a buzzword – good data fuels smarter decisions. Available for Mining applications, Data-enhanced Solutions from MTU harness that power, giving you vital information and helpful tools to simplify and streamline MTU equipment ownership, operation and maintenance.

Monitor activity from afar.

Identify faults early and make informed decisions quickly – even thousands of miles from the work site – by accessing vital engine and system information online with Remote Services.

Be proactive.

Remote Services can improve your engine's performance, and your profitability, by helping you avoid downtime. Using a telemetric device, important data such as oil temperature, current location and hours of duty is recorded and transmitted in near real-time or at predetermined intervals. Through early fault identification, you can act decisively to increase engine efficiency, prevent damage, reduce downtime, identify necessary replacement parts and save on service and repairs. All you need is a computer with an Internet connection.

Be secure.

Your data is handled with the strictest confidentiality. We provide a secure infrastructure and user administration via our MTU security design.

An onboard telemetric device transmits vital equipment data, accessible in near real-time on your computer screen.

Factory remanufactured MTU products deliver the same high standards of performance, service life and quality as new MTU products, along with identical warranty coverage – at a fraction of the cost. And with design and model-related updates, they also feature similar technological advancements. Developed by R&D engineers, the remanufacturing process saves you time and money, while benefiting the environment through the reuse of materials. To help you work efficiently, a wide range of remanufactured parts, engines and systems are available worldwide.

Reduce lifecycle costs.

As you evaluate your long-term power needs, you must consider a variety of factors. Factory remanufactured products are a smart solution, helping you reduce the total lifecycle cost of your equipment.

Save time.

Factory remanufactured products put your equipment back to work faster than an overhaul, which reduces downtime, service time and indirect costs such as storage.

Maintain MTU standards.

All products are remanufactured to strict MTU standards by MTU-certified technicians at regional MTU reman centers. Only MTU can remanufacture MTU parts, engines or systems to original MTU factory specifications.

Protect the environment.

Since remanufacturing is an efficient use of resources and energy, factory remanufactured products benefit the environment as well.

Local support. Worldwide.

Whenever and wherever you need expert support, MTU specialists are available. Our global service network of more than 1,200 locations - backed by our cutting-edge Parts Logistics Centers provides you this assurance. To find your local MTU distributor, visit www.mtu-online.com.

Customer Assistance Center

info@mtu-online.com

Europe, Middle East, Africa

Asia/Pacific +65 6860 9669

North and Latin America +1 248 560 8888

Local support. Worldwide.

We ensure that you receive individualized support from our global network of more than 1,200 service centers

- ☐ Global headquarters
- Regional headquarters

70 | Industrial | Sales Program 2016 Sales Program 2016 | Industrial | 71

Exhaust emissions

Many countries have implemented environmental legislation to protect people from consequences of polluted air. For this reason an increasing number of countries regulate emissions from specific mobile and stationary sources.

Emission standards may apply internationally, nationally and/or for specific areas. The enforcement of an emission legislation may depend for example on the area where the equipment is used and the way it is operated.

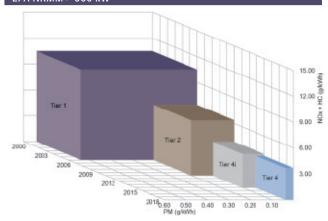
The emission legislations may be categorized by power range and/ or cylinder capacity. Emission legislations generally require a certificate which states compliance. Stationary applications may require on-site approvals (on-site emission test) depending on the particular emission legislation.

Please find as follows examples of emission standards which apply to the C&I, Agriculture and Mining Industry. For details please consult the applicable legislation and/or permitting authority.

Emission legislation for C&I, Agriculture and Mining applications may differentiate between mobile and stationary applications/machinery.

Nonroad mobile machinery emission legislation may differentiate between constant and variable speed applications.

Nonroad mobile machinery emission legislation may differentiate between ratings and cylinder volume.


Emission legislation for mobile applications are e.g. US EPA, EU NRMM, China NRMM, MoEF India/CPCB

Stationary emission legislation differentiates between emergency standby and non-emergency applications. Usually non-emergency applications have more stringent emission limits. Engines for emergency standby applications are often limited by operating hours per year. The operating hour limitation may be defined differently from country to country. Especially stationary applications may be subject to more stringent regional or municipal emission limits (e.g., Non-Attainment Areas).

Emission legislation for stationary applications is highly fragmented, e.g. US EPA, EU NRMM, TA-Luft, NEA Singapore, MoEF India/CPCB, China NRMM.

Sample for emission stages in C&I, Agriculture and Mining industry: EPA

EPA NRMM > 560 kW

Examples for emission level description:

- US EPA Nonroad Tier 4 (40CFR1039)
- -> certified
- US EPA Nonroad Tier 2 Comp (40CFR89)
 - -> compliant with emission legislation not certified
- US EPA Nonroad Tier 2 Comp
- compliant and corresponding to emission limit values not certified

Please note that the engines and systems (only) comply with the country or region specific emission requirements and have appropriate emission certification(s) which are explicitly stated in respective RRPS/MTU defined technical specifications. Any Export/Import/Operation of the engine in countries or regions with different applicable emission law requirements is at the customers responsibility.

Notes

Conversion Table

Additional available sales programs:

- Marine
- Rail
- Gendrive
- Oil & Gas

1 kW	= 1.360 PS	g	$= 9.80665 \mathrm{m/s^2}$
1 kW	= 1.341 bhp	Π	= 3.14159
1 HP	= 1.014 PS	е	= 2.71828
1 oz	= 28.35 g		
1 lb	= 453.59 g	1 lb	= 16 oz
1 short ton	= 907.18 kg	1 short ton	= 2000 lbs
1 lb/HPh	= 447.3 g/PSh	1 ft lb	= 1.356 Nm
1 lb/HPh	= 608.3 g/kWh	1 ft/min	= 0.00508 m/s
1 gal/HPh(US	S)= 4264 g/kWh	pDiesel	= 0.83 kg/l
1 kWh	= 860 kcal	1 lb/sqin	= 0.069 bar (1 psi)
1 cal	= 4.187 J	1 mm HG	= 1.333 mbar
			(133.3 Pa)
1 BTU	= 1.055 kJ	1 mm WS	= 0.0981 mbar
			(9.81 Pa)
1 inch	= 2.540 cm	T (K)	$= t (^{\circ}C) + 273.15$
1 sq. inch	$= 6.542 \text{ cm}^2$	t (°C)	$= 5/9 \times (t (°F) -32)$
1 cu. inch	$= 16.387 \text{ cm}^3$	t (°C)	$= 5/4 \times t (^{\circ}R)$
1 foot	= 3.048 dm	1 foot	= 12 inches
1 sq. foot	$= 9.290 \text{ dm}^2$	1 yard	= 3 feet
1 land mile	= 1.609 km	1 land mile	= 5280 feet
1 naut. mile	= 1.853 km	1 naut. mile	e = 6080 feet
1 GB Gallon	= 4.546		
1 US Gallon	= 3.785		
1 US Barrel	$= 0.159 \text{ m}^3$		
	= 42 US Gallons		
-			

Energy:	1 J = 1 Ws = 1 VAs = 1 Nm
Power:	1 W = 1 VA = 1 Nm/s
Force:	$1 N = 1 kgm/s^2$
Pressure:	$1 \text{ Pa} = 1 \text{ N/m}^2 (1 \text{ bar} = 10^5 \text{ Pa})$
MEP (bar)	$= P_{cyl}(kW) \times 1200$
	$\overline{n(1/\min) \times V_{cyl}(l)}$
Torque (Nm)	$= P_{ges}(kW) \times 30000$
	n(1/min) x π

Subject to change. | 3190241 | Edition 02/16 | EPC 2016-09 CM | Printed in Germany on chlorine-free bleached paper.

MTU Friedrichshafen GmbH MTU Asia Pte Ltd MTU America Inc. Part of the Rolls-Royce Group www.mtu-online.com